You are about to leave jnjmedtech.com. By clicking to continue, you will be taken to a web site governed by their own Legal and Privacy Policies.
Key Resources

Instructions for Use
Features & Benefits

MACROSTRUCTURE
Surface roughness has been shown to have a beneficial effect on cell differentiation and proliferation in in-vitro studies of osteoblast-like cells cultured on similar roughened titanium materials7,8

MICROSTRUCTURE
In-vitro studies have reported greater osteoblastic differentiation in human stem cells cultured on similar porous titanium constructs compared to solid titanium surfaces9
- In-vivo studies with similar porous titanium materials show that bony in-growth is increased at the 500-700 μm pore size range compared to larger or smaller pores10-12
- The porosity of cancellous human bone is typically 50-90%13
- Based on this published science, CONDUIT™ Implants are designed with 80% porosity and 700 μm pore size2,14

NANOSTRUCTURE
Similar titanium materials with nanoscale features have shown in in-vitro studies to lead to increased osteoblast adhesion when compared to conventional titanium materials15
- All CONDUIT Implants undergo acid etching and heat treatment to promote micro-and nanoscale surface roughness1

EXCELLENT VISUALIZATION
Ability to clearly visualize the cage intra-and post-operatively on imaging modalities without interference3,4
80% porosity2:
- High radiographic visibility allows for better contouring, endplate-implant contact evaluation and absence of tantalum marker scattering intra-and post-operatively
- Clear visualization of the implant on X-Ray, absence of scattering on CT Scan and diminished artifacts in MRI3,4

TARGETED MODULUS OF ELASTICITY
Modulus of Elasticity similar to cancellous bone5,6 Proprietary 3D printing technology leads to cellular design that offers Modulus of Elasticity of titanium similar to bone5
- Highly porous surface area and implant footprint variety that allows for maximum endplate-implant contact16
References
- DePuy Synthes. SEM Report. 2019. ADAPTIV #103546250
- Emerging Implant Technologies. Validation of Strut Diameter Summary. 2016. EOS. VAL2016-043.
- Emerging Implant Technologies. Lumbar Implants Imaging Overview. 2016. EOS. 20102016-Rev.C
- Emerging Implant Technologies. Cervical Implants Imaging Overview. 2016. EOS.
- Youngs Modulus comparison of various materials GUM00001 rev A/ VAL 2017-007
- Wolff J. “The Law of Bone Remodeling”. Berlin Heidelberg New York: Springer, 1986 (translation of the German 1892 edition)
- Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J 2012; 12:265-272
- Lincks, J. et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19, 1998. Pages 2219-32
- Cheng A, Cohen D, Boyan B et al. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/ Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro. Calcif Tissue Int 2016; 99:625 -637
- Wu S-H, Li Y, Zang Y-Q, et al. Porous Titanium-6 Aluminum-4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Poly-Ether-Ether-Ketone Cage in Sheep Vertebral Fusion. Art Organs 2013; 37:191-201
- Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering 2016; C59: 690 -701
- Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by Selective Laser Melting. Acta Biomat 2011; 7:2327-2336.
- Bostrom M, Boskey A, Kaufman J, Einhorn T. Form and function of bone. In: Orthopaedic Basic Science Biology and Mechanics of the Musculoskeletal System. 2nd ed. Rosemont, IL: AAOS; 2000: 320-369
- Emerging Implant Technologies. Scaffold Characteristics. 2018. EOS. P773 \
- Webster TJ and EjioforJU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V and CoCrMo. Biomat 2004; 25:4731-4739
- Emerging Implant Technologies. EIT Implant Sizes. 2018. EOS. Drawing 12028.05.108.
123958-210823 DSUS
© DePuy Synthes 2022. All Rights Reserved. This site is published by the DePuy Synthes Companies, which are solely responsible for its content. This site is governed solely by applicable U.S. laws and governmental regulations. This site is for visitors from the United States. The third party trademarks used herein are the trademarks of their respective owners.